Neonatal Therapeutic Hypothermia

A Wasunna
Professor of Neonatal Medicine and Pediatrics
School of Medicine, University of Nairobi
Definition of Perinatal Asphyxia

*No agreed universal definition

ACOG/AAP

“Marked impairment of gaseous exchange in the fetus leading to progressive hypoxemia, hypercapnia and significant metabolic acidosis if prolonged”

They proposed the following criteria for diagnosis: umbilical cord arterial pH <7; Apgar score of 0-3 for longer than 5 min; neurological manifestations (e.g., seizures, coma, or hypotonia); and multisystem organ dysfunction, mainly cardiovascular, gastrointestinal, hematological, pulmonary or renal system dysfunction

WHO

“Failure to initiate and sustain breathing at birth”
Definition of Hypoxic Ischemic Encephalopathy (HIE)

Abnormal state of neurobehavior comprising altered level of consciousness, abnormal brainstem and motor function as a result of prolonged hypoxemia and ischemia
Severity of HIE

Sarnat Chart for the Staging of Severity of HIE (Sarnat H.B., Sarnat M.S. 1976)

<table>
<thead>
<tr>
<th>Severity</th>
<th>Stage 1 (Mild)</th>
<th>Stage 2 (Moderate)</th>
<th>Stage 3 (Severe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of consciousness</td>
<td>Hyperalert</td>
<td>Lethargic or Obtunded</td>
<td>Stupor or coma</td>
</tr>
<tr>
<td>Activity</td>
<td>Normal</td>
<td>Decreased</td>
<td>Absent</td>
</tr>
<tr>
<td>Neuromuscular Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle Tone</td>
<td>Normal</td>
<td>Mild hypotonia</td>
<td>Flaccid</td>
</tr>
<tr>
<td>Posture</td>
<td>Mild distal flexion</td>
<td>Strong distal flexion</td>
<td>Intermittent decerebration</td>
</tr>
<tr>
<td>Stretch Reflexes</td>
<td>Overactive</td>
<td>Overactive</td>
<td>Decreased or absent</td>
</tr>
<tr>
<td>Complex or primitive reflexes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suck</td>
<td>Weak</td>
<td>Weak or absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Moro (Startle)</td>
<td>Strong</td>
<td>Weak</td>
<td>Absent</td>
</tr>
<tr>
<td>Tonic neck</td>
<td>Slight</td>
<td>Strong</td>
<td>Absent</td>
</tr>
<tr>
<td>Autonomic Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupils</td>
<td>Mydriasis</td>
<td>Miosis</td>
<td>Variable</td>
</tr>
<tr>
<td>Heart Rate</td>
<td>Tachycardia</td>
<td>Bradycardia</td>
<td>Variable</td>
</tr>
<tr>
<td>Seizures</td>
<td>None</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0122116.t002
<table>
<thead>
<tr>
<th>Category</th>
<th>Moderate Encephalopathy</th>
<th>Severe Encephalopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of consciousness</td>
<td>Lethargic</td>
<td>Stupor or coma</td>
</tr>
<tr>
<td>Spontaneous activity</td>
<td>Decreased activity</td>
<td>No activity</td>
</tr>
<tr>
<td>Posture</td>
<td>Distal flexion, complete extension</td>
<td>Decerebrate</td>
</tr>
<tr>
<td>Tone</td>
<td>Hypotonia (focal or general)</td>
<td>Flaccid</td>
</tr>
<tr>
<td>Primitive reflexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suck</td>
<td>Weak</td>
<td>Absent</td>
</tr>
<tr>
<td>Moro</td>
<td>Incomplete</td>
<td>Absent</td>
</tr>
<tr>
<td>Autonomic system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupils</td>
<td>Constricted</td>
<td>Deviated, dilated, or nonreactive to light</td>
</tr>
<tr>
<td>Heart rate</td>
<td>Bradycardia</td>
<td>Variable</td>
</tr>
<tr>
<td>Respiration</td>
<td>Periodic breathing</td>
<td>Apnea</td>
</tr>
</tbody>
</table>
Epidemiology of Perinatal Asphyxia

- WHO: 4 - 9 million newborn babies develop birth asphyxia annually globally

- Birth asphyxia
 - account for 23% of neonatal deaths worldwide
 - 3rd largest cause of under 5 mortality

<table>
<thead>
<tr>
<th>Location</th>
<th>Incidence/1000 live births</th>
<th>Moderate or Severe HIE</th>
<th>Case Fatality Rate %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed Countries</td>
<td>3 - 5</td>
<td>0.5 - 1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cape Town</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>26</td>
<td></td>
<td>≥ 40</td>
</tr>
</tbody>
</table>
Pathophysiology And Pathogenesis of HIE
Management of HIE

The understanding of the pathophysiologic and pathogenetic processes operating in asphyxia has opened new horizons to therapeutic interventions.

General Principles

- Prevention of intrauterine and perinatal asphyxia through fetal monitoring and safe delivery
- Supportive strategies
 - Adequate initial resuscitation
 - Respiratory and cardiovascular support
 - Nutritional and metabolic support
 - Prevention and management of multiorgan dysfunction and complications
Promoting existing endogenous neuroprotection

- Therapeutic Hypothermia*
- Erythropoietin (EPO)
- Melatonin
- Remote Ischemic Postconditioning (RIPostC)
Other Experimental Neuro-protective Compounds

- Xenon
- Magnesium sulphate
- Allopurinol
- Topiramate
- N-acetylcystine stem (NAC)
- Opioids
- Stem cell therapy
Therapeutic Hypothermia
Historical Background

- 1959: Westin’s report of favorable outcome of 6 newborn babies submerged in cold water for 20 minutes
- 1987: Busto et al report of neuroprotection in adult rats when brain temperature was lowered by only a few degrees during ischemia
- Clinical studies on cooling the newborn baby’s brain post asphyxia started around 1994
- 2005: first large RCT established the efficacy of TH in asphyxiated newborn babies (Gluckman et al Lancet 2005;365(9460):663)
Mechanisms of Action

- **Reduction of cerebral metabolism:** inhibits post depolarization release of many toxins including EAA, NO, free radicals

- **Attenuation of excitatory brain injury:** Suppresses hyperexcitability of glutamate receptors, antagonizes NMDA

- **Alleviates oxidative cascade:** TH lowers oxidative stress markers

- ** Suppresses inflammation:** TH markedly reduces cascade proteins

- **Suppresses programmed cell death/apoptosis**

- **Expands therapeutic window**
Prerequisite for TH

- Gestation ≥ 36 weeks
- Apgar score of ≤5 and need for resuscitation beyond 10 minutes after birth
- Acidosis with cord arterial blood pH of < 7.0 in the first hour of life (where available)
- Neurological signs - hypotonia, hypertonia, weak/absent suck, seizures
- Age ≤ 6 hours from birth
- Abnormal aEEG pattern (where available)
- Sarnat staging of moderate or severe asphyxia
- Ability to provide adequate supportive care and monitoring
- Absence of major congenital abnormalities
Who Benefits Most From TH?

- Babies with moderate encephalopathy and without early onset seizures have the most promising outcome.

- Babies with severe encephalopathy and/or early onset seizures have mainly necrosis as opposed to apoptosis as the general brain injury pattern hence reduced benefit.

- Severe septicemia reduces the benefit from TH.
Modalities Used for TH
1. Cool Cap
2. Tecotherm™
3. Phase Changing Materials (PCM)

- made of salt hydrides, fatty acid and esters or paraffin melting at set point
- Absorb and release heat at a nearly constant temperature
- Can store 5 - 14 times more heat per unit volume than water or masonry
The MiraCradle™
4. Others

- Ice packs: wide temperature fluctuations

Principle of TH

- Achieve rectal temperature of 33°C - 34.5°C within 3 to 4 hours
- Maintain rectal temperature steadily between 33°C and 34.5°C for 72 hours
- Rewarm the baby at a steady rate of 0.5°C per hour until a rectal temperature of 37±0.5°C is attained
- Monitor the baby closely until 80 hours
- Maintain adequate supportive care and close monitoring throughout the TH and continue intensive care after the TH
Studies Reporting Favorable Outcome In Babies Treated With TH

- Whole body cooling
 - 6 RCTs 2002 - 2011
 - 3 of these (NICHD 2005, TOBY 2009, ICE 2011) were multicenter with >100 babies per arm

- Selective head cooling
 - 6 RCTs 1998 - 2010
 - 2 of these (CoolCap 2005, Zhou 2010) were multicenter with >100 babies per arm

- Meta analysis
 - 3 Meta analysis reports 2010 - 2012
 - Each of these analyzed at least 6 studies
Efficacy of TH

TH has been shown in various studies to reduce composite outcome of:

- Death or major neurodevelopmental disability
- Mortality
- Major disability at the age of 18 months
- Cerebral palsy
- Developmental delay
- Blindness
Adverse Effects of TH

- Sinus bradycardia
- Thrombocytopenia
- Background abnormal aEEG/Seizures
- Increased multiorgan injury
Conclusion

- Perinatal asphyxia remains a major cause of neonatal mortality and burden of disease in emerging economies.
- Better understanding of the pathogenesis in asphyxia has opened for clinical trials of possible future interventions.
- Therapeutic Hypothermia offers the most promising neuroprotective intervention in moderate and severe perinatal asphyxia at the present time.
- There is an urgent need to develop more of the cheaper, effective and easier to apply modalities for TH.
- Gaps in knowledge and gray areas still exist with regard to application and actions of TH, especially its use in late preterm babies.