DIVERSIFIED INITIATIVES IN COMMUNITY BASED FOOD FORTIFICATION TO ENHANCE NUTRITION AND HEALTH IN WESTERN KENYA

KPA Conference, 24th to 27th April 2018, Mombasa
Dr. Rhoda Nungo, KALRO –FCRI
THE PROBLEM

Persistent malnutrition with high levels of stunting nationally at 26%.

Western Kenya in 6 counties:
1. Migori 26.4% 2. Siaya 24.7%
3. Bungoma 24.4% 4. Vihiga 23.5%
5. Busia 22.0% 6. Homabay 18.7%
UNDERLAYING CAUSE

Lack of Knowledge in Nutrition, Diet Diversity and Food Fortification

Complicated by:
- Poor feeding habits
- Culture and stigmatization of certain foods
- Under estimation of Indigenous knowledge.
OBJECTIVES

(1). Develop nutrient-enhanced, consumer-acceptable cassava product and Finger millet based Ready-to-use-Food.

(2). Train willing small scale entrepreneurs in development and promotion of nutritious food products.
WHY LIMITED SKILLS IN FOOD FORTIFICATION

- Small scale Entrepreneurs (SMEs) not conversant with diversified Food Fortification and safety for nutritious food products.

- Expensive food processing equipment.

- Complicated laws and regulations for SMEs to understand and adhere to.
MATERIALS AND METHODS

- Products formulated at KALRO
- Food materials and equipment purchased or sourced locally and assembled in a homestead.
PROCESSING PRODUCT 1

1: Scrap off soil and Peel. 2: Wash and Grate
3: Sieve with Coconut sieve. 4: Mix in soya bean flour
PROCESSING 1 CONT---

5: Ferment on wooden plunks.
6: Sun-dry on raised surface
7: Sieve in a wooden frame.
8: Roast on open-fire
9: Ready product, cool and pack. 10: Cyanide determination
SENSORY EVALUATION

11: Product preparation

12: Women farmers Taste and select 2 products.
NUTRIENT AND MICROBIOLOGICAL ANALYSIS

- Crude Protein, determined by the micro-Kjeldahl (AOAC 1975: 984.13) method,

- βeta-carotene, determined by column chromatography and spectrophotometer as described by Pearson, (1978).

- Microbiological analysis for products safety from coliforms and staphylococcus aureus carried out using the standard laboratory methods in food and dairy microbiology (Harrigan and McCance (1966)).
PROCESSING PRODUCT 2

MATERIALS USED:

- Finger millet,
- Soya beans,
- Groundnuts,
- Local brown sugar,
- Home processed red palm oil,
- Minerals and vitamins.
PROCESSING PRODUCT 2

METHODS USED:

- Germination, sun-drying, roasting and milling Finger millet.
- Soaking, boiling, sun-drying and milling soya beans:
- Roasting and de-hullling Groundnuts
- Mixing and pasting all ingredients.
- Nutrient analysis
TRAINING SMEs

The processing of products was carried out by Potential Small and Medium Scale Entrepreneurs as part of Community involvement.
RESULTS and DISCUSSIONS

Two Nutrient Enhanced products
RESULTS and DISCUSSIONS

Table 1: Results for Product Sensory evaluation. (N =43)

<table>
<thead>
<tr>
<th>Product</th>
<th>Appearance</th>
<th>Taste</th>
<th>Flavour</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product1</td>
<td>4.53 ± 1.45b</td>
<td>4.63 ± 0.85b</td>
<td>4.51 ± 1.55b</td>
<td>4.19 ± 1.03b</td>
</tr>
<tr>
<td>Product2</td>
<td>5.98 ± 1.18a</td>
<td>5.44 ± 1.03a</td>
<td>5.72 ± 1.05a</td>
<td>5.88 ± 1.00a</td>
</tr>
<tr>
<td>Product3</td>
<td>5.63 ± 1.59a</td>
<td>5.37 ± 1.09a</td>
<td>5.77 ± 1.15a</td>
<td>5.95 ± 1.27a</td>
</tr>
<tr>
<td>Product4</td>
<td>3.93 ± 1.82d</td>
<td>4.84 ± 1.38b</td>
<td>4.60 ± 1.45b</td>
<td>4.53 ± 1.32b</td>
</tr>
<tr>
<td>Product5</td>
<td>4.16 ± 1.57c</td>
<td>2.74 ± 1.48c</td>
<td>2.47 ± 1.16c</td>
<td>2.47 ± 1.20c</td>
</tr>
</tbody>
</table>

Evaluation done on 7-point hedonic scale. Score 4 acceptable lower limit.
RESULTS and DISCUSSIONS

- Product2 and Product3, selected for high acceptability, 6.25, 5.42: 6.04, 5.84 mean values. These products had been incorporated with 5%:10% soya bean flour.
- Product4 with 20% soya bean flour had a very thin consistency, panelists wanted a thick consistency of high satiety value.
- Product5, least acceptable and below expected score lower limit of 4.00. Product had been prepared using the “Quick unplanned method” which should never be practiced.
RESULTS and DISCUSSIONS

Table 2: Nutrient and HCN compared to FAO/KEBS

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Product2</th>
<th>Product3</th>
<th>FAO</th>
<th>KEBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein g</td>
<td>4.99</td>
<td>6.21</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>Vitamin A mg</td>
<td>137.50</td>
<td>287.50</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>HCN/ppm/kg</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
RESULTS and DISCUSSIONS

Table 3: Microbiological load results as mean values

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Total Count per ml</th>
<th>Coliform count per ml</th>
<th>Staphylococcus count per 0.5ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product2</td>
<td>6.35x10^2 cfu</td>
<td>No coliform cfu count at 10^-1</td>
<td>No cfu count at 10^-1 dilution</td>
</tr>
<tr>
<td>Product3</td>
<td>6.25 x 10^2 cfu</td>
<td>2.0 x10^2 cfu</td>
<td>No cfu count at 10^-1 dilution</td>
</tr>
</tbody>
</table>

The low coliform count and absence of staphylococcus indicate high personnel handling and good hygienic conditions during processing and hence products safe for consumption.
RESULTS and DISCUSSIONS

Table 4. Nutrient of product compared to marketed RTUF

<table>
<thead>
<tr>
<th>Product name</th>
<th>Nutrient Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy Kcal</td>
</tr>
<tr>
<td>Study product /100g</td>
<td>445.9</td>
</tr>
<tr>
<td>Plumpy’Doz /100g</td>
<td>534</td>
</tr>
<tr>
<td>Supplementary Plumpy/100g</td>
<td>545</td>
</tr>
</tbody>
</table>

Source of RTUFs in the Market*, WFP https://www.wfp.org/nutrition/special-nutritional-products
STUDY OUTCOME 1

Cassava Gari Branded: ‘WITABIXS MTAANI’
Produced, sold and enjoyed by both Children and Adults in Nambale, Busia County.
STUDY OUTCOME 2

Small scale entrepreneur: EASTCOM FOODS in Siaya county taken up product production challenge,
2: Moved to the next level, Kenyan RTUF Branded “TAMUU FIMSNUTS”,
3: Certified by KEBs, Bar coded and Free from Afflatoxins.
4: Product successfully used by the Vulnerable.
CONCLUSIONS

- Food Fortification at community level using diversified food is possible with adequate supervision.
- Use of locally grown foods familiar to communities may lead to increased production and consumption for enhanced Nutrition and Health.

- Use of locally available cereals and legumes could provide RTUFs that are cheaper and accessible.

- Locally made RTUFs have the potential to contribute to reduction of malnutrition for both children and the vulnerable and reduce poverty in developing countries.
RECOMMENDATIONS

1: Multi-Stakeholders to validate the products efficacy to enable wider use.

2: Create awareness and promote products in the wider Kenya community.

3: Make other RTUF products using Sorghum, Pearl millet with Pigeon peas/Green grams to give more options for other counties with high levels of malnutrition.
REFERENCES

Chelule et al, (2010)
KEBs, (2010).
ACKNOWLEDGEMENT

- Farmers and SMEs,
- UoN,
- JKUAT,
- ICRISAT,
- KALRO,
- McKnight Foundation
- My Children for Funding Cassava product.
- MOH
- KPA
COLLABORATORS

Dr. Rhoda Nungo¹, Prof. M. Okoth², Dr. C.A.Oduori¹, Mr. D. O. Ajaku³ and Prof. A. Makokha¹

Contact details: Rhoda A. Nungo, rhodazik@gmail.com, +254 724687774
ASANTENI SANA

SMART FOOD
FOR
ENHANCED NUTRITION